|
º» ÀÚ·á´Â Michaelis-Menten equation°ú Lineweaver-Burk equation°ú °¢°¢ÀÇ curve ÀÇ¹Ì¿Í Â÷ÀÌÁ¡À» ½ÇÇèÇÑ °á°ú ¸®Æ÷Æ®ÀÔ´Ï´Ù. ·¹Æ÷Æ®5 / 1. Introduction 2. Materials 3. Methods 4. Results & Discussion 5. Reference / 1. Introduction À̹ø ½ÇÇèÀº È¿¼Ò kineticsÀÇ ±âº»ÀÌ µÇ´Â Michaelis - Menten kinetics ¿¡ ´ëÇؼ ÀÌÇظ¦ ÇÏ°í Michaelis-Menten equation°ú Lineweaver-Burk¡¦ |
|
|
|
|
|
¥°. Step1 5°¡Áö ¹æ¹ýÀ¸·Î f(x) = e ^{ -x}-x ÀÇ ±Ù ±¸Çϱ⠺λê´ëÇб³ ¼öÄ¡Çؼ®ÀÇ ÁÖÁ¦ÀÎ ¹æÁ¤½ÄÀÇ ±ÙÀ» ±¸ÇÏ´Â ¹®Á¦¸¦ ´Ù·ç¸ç.. / ¥°. Step1 5°¡Áö ¹æ¹ýÀ¸·Î f(x) = e ^{ -x}-x ÀÇ ±Ù ±¸Çϱâ 1. ÀüÁ¦ Á¶°Ç 2. Bisection Method 3. False Position Method 4. Fixed-point iteration Method 5. Newton-Raphson Method 6. Sacand Method ¥±. Step2 ¹Ýº¹ Ƚ¼ö¿¡ µû¸¥ ¿ÀÂ÷ÀÇ Æ¯¼º ºñ±³ ¡¦ |
|
|
|
|
|
[Àü»ê¿À¯Ã¼¿ªÇÐ(CFD)]1Â÷ Wave Equation¿¡ FEM(À¯ÇÑ¿ä¼Ò¹ý) Àû¿ë / 1) Problem 2) Figure 6-4,5 3) Figure 6-6,8 4) Figure 6-11,12 5) Figure 6-15, 16 6) Extra Figure / 1) Problem 1Â÷ Wave Equation¿¡ ´ëÇÑ ¹®Á¦¸¦ ´Ù·ç´Â °ÍÀº Àü»ê¿À¯Ã¼¿ªÇÐ(CFD)¿¡¼ Áß¿äÇÑ ¾ÆÀ̵ð¾î¸¦ Á¦°øÇÑ´Ù. Æĵ¿ ¹æÁ¤½ÄÀº ¹°¸®Àû Çö»ó, ƯÈ÷ Æĵ¿ ÀüÆÄ¿Í °ü·ÃµÈ Çö»óÀ» ±â¼úÇÏ´Â µ¥ ³Î¸® »ç¿ëµÈ´Ù¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
4p age   | 
3,000 ¿ø
|
|
|
|
|
|
[Àü»ê¿À¯Ã¼¿ªÇÐ(CFD)] Inviscid Burgers equation¿¡ FVMÀû¿ëÇϱâ / 1) Code 2) Graph 3. 2nd order scheme with limiter superbee / |
|
·¹Æ÷Æ® >
±âŸ  | 
14p age   | 
3,000 ¿ø
|
|
|
|
|
|
¹ÌÄ«¿¤¸®½º-¸àÅÙ½Ä(Michaelis-Menten equation) / 1. ¹ÌÄ«¿¤¸®½º-¸àÅÙ ¹æÁ¤½ÄÀÇ À¯µµ 2. ¹ÌÄ«¿¤¸®½º-¸àÅÙ ½ÄÀÇ ÀÇ¹Ì 3. ´ç´¢º´¾àÀÇ ÀÀ¿ë 4. Âü°í¹®Çå / 1. ¹ÌÄ«¿¤¸®½º-¸àÅÙ ¹æÁ¤½ÄÀÇ À¯µµ \[ \frac{d[ES]}{dt} = 0 = k1[E][S] - k-1[ES] - k2[ES] \] ¿©±â¼ [ES]´Â È¿¼Ò-±âÁú º¹ÇÕüÀÇ ³óµµ, [E]´Â ÀÚÀ¯ È¿¼ÒÀÇ ³óµµ, [S]´Â ±âÁúÀÇ ³óµµ´Ù. À§ ½ÄÀ» º¯ÇüÇÏ¸é ´ÙÀ½°ú °°Àº ÇüŸ¦ ¾ò¡¦ |
|
|
|
|
|
¿µ¾ç»ýÈÇÐ Henderson-Hasselbach equation´Â ¹°ÁúÀÇ pH ³óµµ¸¦ ÃøÁ¤ÇÏ°í ¿¹ÃøÇϴµ¥ Áß¿äÇÑ µµ±¸ / 1. ¼·Ð 2. º»·Ð 1) Çî´õ½¼ Çϼ¿¹ÙÈå ½ÄÀÇ À¯µµ°úÁ¤ 2) Çî´õ½¼ Çϼ¿¹ÙÈå ½ÄÀÇ ÀÇ¹Ì 3. °á·Ð 4. Ãâó ¹× Âü°í¹®Çå / 1. ¼·Ð Henderson-Hasselbalch ¹æÁ¤½ÄÀº »ýÈÇÐ ¹× »ý¸®ÇÐ ºÐ¾ß¿¡¼ pH¿Í »ê¿°±â ÆòÇüÀ» ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ±âÃÊÀûÀÎ µµ±¸ÀÌ´Ù. ÀÌ ¹æÁ¤½ÄÀº ¡¦ |
|
|
|
|
|
È°ø»ý¸í°øÇнÇÇè (È°ø½Ç) ¿¿ªÇÐ »óŹæÁ¤½Ä EoS, Equation of State) ·¹Æ÷Æ® / 1.Theory 1.1.Equation of state 1.2.Ideal gas equation 1.3.Virial Model 1.4.Van der Waals Equation 1.5.Soave-Redlich-Kwong equation 2.½ÇÇè ¹æ¹ý 2.1. ½ÇÇè¿¡ »ç¿ëÇÏ´Â ÇÁ·Î±×·¥ 2.2.½ÇÇè µ¥ÀÌÅÍ 2.3.½ÇÇè ¹æ¹ý 3.Data 3.1.NIST data 3.2.¿Âµµ º°, ±âü º° 20°³ÀÇ plot ¹× EoS Á¦½Ã¡¦ |
|
|
|
|
|
[ÀÏ¹Ý ÈÇÐ ½ÇÇè ¿µ¾î ·¹Æ÷Æ®] Galvanic Cells, the Nerst Equation / 1. Introduction 2. Experimental Procedure 3. Results 4. Discussion 5. Conclusion / 1. Introduction Galvanic cells, also known as voltaic cells, represent a fundamental concept in electrochemistry, where chemical energy is converted into electrical energy through spontaneous redox react¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
6p age   | 
3,000 ¿ø
|
|
|
|
|
|
10. Galvanic Cells; the Nernst Equation / ¥°. Introduction 1. Oxidation(»êÈ), reduction(ȯ¿ø) 2. Galvanic cell 3. Nernst equation ¥±. Results and Analysis 1. Reduction Potentials of Several Redox Couples 2. Effect of Concentration Chagnes on Cell Potential 3. The Nernst Equation and an Unknown Concentration ¥². Conclusion & Discussion ¥³. Reference ¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
8p age   | 
3,000 ¿ø
|
|
|
|
|
|
(A£«·¹Æ÷Æ®) Ms temperature equation, Dilatometer equipment ÀÇ ¿ø¸® / 1. Ms temperature equation Á¶»ç 2. Dilatometer equipment ÀÇ ¿ø¸® 3. X-ray DiffractometerÀÇ ¿ø¸® ¹× Martensite, Austenite peaks Á¶»ç / 1. Ms temperature equation Á¶»ç Ms = ÀÌÀü»ó ÀÀ·Â - ÁÖ±âÀû °áÇÔ. ÀÌ ¹æÁ¤½ÄÀº Àç·á ³»ºÎÀÇ º¯ÅÂ¿Í Àç·á°¡ ¿ÜºÎ Àڱؿ¡ ´ëÇØ ¾î¶»°Ô ¹ÝÀÀÇÏ´ÂÁö¸¦ ¼öÇÐÀûÀ¸·Î ¼³¡¦ |
|
|
|
|