¥°. Introduction
Galvanic cells, also known as voltaic cells, are fundamental components of electrochemistry, serving as practical applications of spontaneous redox reactions to generate electrical energy. These cells convert chemical energy directly into electrical energy through oxidation-reduction (redox) reactions, which are the basis of many batteries and energy storage devices used in everyday life. The significance of galvanic cells lies not only in their ability to produce power but also in their role in understanding the principles of electrochemical reactions, thermodynamics, and chemical kinetics. At the core of a galvanic cell is the separation of oxidation and reduction reactions into two distinct half-cells. Each half-cell contains an electrode immersed in an electrolyte solution, where oxidation occurs at the anode and reduction occurs at the cathode. The flow of electrons from the anode to the cathode through an external circuit generates an electric current, while
¡¦(»ý·«)
|